dermaviduals® DMS
  MenuMenü Publikationen >> Inhaltsstoffe Impressum Sitemap English
 

Sauerstoff – viel mehr als heiße Luft

 

Sauerstoff ist überall – in der Luft und gebunden im Wasser und in vielen anderen alltäglichen Stoffen. Das farblose Gas ist immer für Überraschungen gut, wie der folgende Beitrag zeigt.

 

Sauerstoff (O) liegt in der Luft als zweiatomiges, gasförmiges O2-Molekül vor und ist in Verbindung mit anderen chemischen Elementen bis in die Erdkruste hinein das häufigste Element auf unserem Planeten.

Sauerstoffverbindungen

Verbindungen von Sauerstoff mit anderen Elementen nennt man Oxide. Während Wasser als flüssiges Oxid des Wasserstoffs der häufigste Kosmetik-Inhaltsstoff sein dürfte, finden sich unter den festen Oxiden viele Pigmente – z. B. Eisenoxide (rot, braun, schwarz) und Titandioxid (weiß). Siliziumdioxid (Quarz), Aluminiumoxid (Ton) und Eisenoxide sind die Hauptbestandteile von Heilerden, die in Masken oder in der Physiotherapie Verwendung finden.
Neben diesen anorganischen Verbindungen gibt es eine außerordentlich große Vielfalt von organischen Sauerstoffverbindungen. Dazu gehören Alkohole wie Ethanol (Lösungsmittel) oder Glycerin (Teil des körpereigenen NMF), viele Riechstoffe auf Aldehyd- und Keton-Basis, Carbonsäuren (Beispiele: gesättigte und essenzielle Fettsäuren) sowie ihre Verbindungen untereinander. Die Triglyceride aus Glycerin und Carbonsäuren sind Hauptbestandteil der Pflanzenöle und der tierischen Fette.
Gebundener Sauerstoff kommt darüber hinaus in Aminosäuren, Peptiden und Proteinen und Phosphor-Verbindungen der lebenden Natur vor. Sauerstofffreie Verbindungen wie das Squalen des menschlichen Sebums bilden dort eher die Ausnahme.

Kontrollierte Reaktionen

Sauerstoff reagiert mit brennbaren, sprich oxidierbaren Stoffen, unter Freisetzung von Energie, die in unserem Körper zur Aufrechterhaltung der Körpertemperatur und zur Bereitstellung mechanischer Energie in den Muskeln genutzt wird. Zu diesem Zweck gibt es in den menschlichen Zellen spezielle Organellen – die Mitochondrien. Dort laufen die Oxidationen inklusive radikalische Reaktionen biochemisch kontrolliert ab. Die einzelnen Reaktionsschritte werden durch Enzyme (Oxidoreduktasen) katalysiert. Endprodukte sind Kohlendioxid, das ausgeatmet wird, sowie Wasser und oxidierte organische Verbindungen, die hauptsächlich über Kot und Urin ausgeschieden werden.
Da eine Oxidation physikalisch immer mit einem Elektronenübergang von dem zu oxidierenden Stoff auf den Sauerstoff verbunden ist, spricht man generell auch dann von einer Oxidation, wenn einem Stoff in irgendeiner Weise Elektronen entzogen werden. Bei der Photosynthese der Pflanzen, die aus Wasser Sauerstoff produzieren, findet eine Oxidation des im Wasser enthaltenen Sauerstoffs (O2-) zu gasförmigem Sauerstoff (O2) statt, indem Elektronen abgegeben werden.

Schadstoffe durch Oxidation

Außerhalb der Mitochondrien können unkontrollierte radikalische Oxidationen Schäden anrichten. Deswegen werden die Zellen der Organismen durch Antioxidantien wie Vitamin C (Ascorbinsäure) und Vitamin E (Tocopherol) geschützt. In der Hautbarriere sind es die Aminosäuren des Natural Moisturizing Factor (NMF) und diverse Peptidstrukturen, die insbesondere gegen oxidierende atmosphärische Radikale wie Stickstoffoxide wirksam sind.
Außerhalb der Organismen entstehen durch photochemische Oxidation organischer Verbindungen viele Schadstoffe wie das im atmosphärischen Smog enthaltene Peroxyacetylnitrat (PAN) oder allergene Peroxide aus ätherischen Ölen. Ranzig riechende Spaltprodukte resultieren aus der Peroxidierung ungesättigter Carbonsäuren. Mitunter kann an den Oxidationen auch das aus 3 Sauerstoffatomen bestehende Ozon (O3) beteiligt sein.

Aggressive Radikale

Besonders aggressiv sind neben dem Ozon (O3) und dem energiereichen Singulettsauerstoff (1O2) das Peroxidanion (O22-), das Hydroxylradikal (HO•) und das Hyperoxidanion alias Superoxidanion (O2-). Sie gehören zur Gruppe der ROS (Reactive Oxygen Species). Die aus der unkontrollierten Reaktion mit organischen Verbindungen resultierenden organischen Hydroperoxide (R-OOH), Peroxyradikale (R-OO•) und Alkoxyradikale (R-O•) sind ebenfalls äußerst reaktiv und schädlich. Um ihre Bildung zu verhindern und sich dagegen zu schützen, werden in Lebensmitteln, Kosmetika und vielen anderen Gegenständen des täglichen Lebens Antioxidantien eingesetzt. Ihr Prinzip ist es, schneller mit ROS zu reagieren als die zu schützenden Zusammensetzungen. Dabei werden sie allerdings auch verbraucht. In Sonnenschutzmitteln geht man einen anderen Weg. Hier wird die Strahlung bereits mithilfe von UV-Filtern in Wärme umgewandelt, bevor sich Radikale bilden können.

Reaktionen in und um die Haut

Schäden an Lipiden ("Lipidperoxidation") oder Proteinen ("Proteinoxidation") in der Haut initiieren Entzündungs- und Alterungsprozesse, DNA-Schäden sowie Hautveränderungen bis hin zu Karzinomen. Äußerlich erkennbar sind Altersflecken, die aus oxidierten Protein-Lipid-Komplexen (Lipofuszin) oder Zucker-Protein-Agglomeraten (Advanced Glycation Endproducts [AGE]) bestehen.
Im normalen physiologischen Stoffwechsel und bei Immunantworten bedient sich selbst der Körper der aggressiven ROS-Moleküle. Ein Beispiel ist Wasserstoffperoxid (H2O2), das Enzym-kontrolliert für spezielle biochemische Reaktionen benötigt wird. Überschüssiges Wasserstoffperoxid wird durch das Enzym Katalase (CAT) zu Wasser und Sauerstoff und durch die selenhaltige Glutathionperoxidase (GPX) zu Wasser abgebaut. So kann es im Organismus keine Schäden anrichten – es sei denn, es liegen Enzymdefekte vor. Die sichtbare Folge eines Enzymdefektes ist zum Beispiel die Vitiligo (Weißfleckenkrankheit). In diesem Fall greift nicht abgebautes Wasserstoffperoxid Melanin und den Melanin-Bildungsprozess an. Die Haut bleibt unpigmentiert. Eine ähnliche Wirkung kann man beim Bleichen von Haut und Haaren mit Wasserstoffperoxid beobachten.
Auch die Hautflora bedient sich eigener Enzyme, die Lipide oxidieren und abbauen können. Dabei entstehen unter anderem kurzkettige Carbonsäuren, die den schützenden Säuremantel der Haut bilden, indem sie den pH senken.

Aseptische Wirkung

Reaktive Sauerstoffverbindungen wirken bei oberflächlichen Infekten und Mykosen aseptisch. Beispiele sind Benzoylperoxid zur Behandlung der Akne. Zur Flächendesinfektion von Gegenständen werden niedrigkonzentrierte Wasserstoffperoxid-Lösungen verwendet. Dabei wird hochreaktiver, naszierender (einatomiger) Sauerstoff freigesetzt. Häufig verwendete sauerstoffabgebende Verbindungen sind auch Kaliumpermanganat, das als schnell wirkendes Mittel bei Pilzinfekten und anderen Hautinfekten verwendet wird, sowie alkalische Hypochlorit-Lösungen (oxidative Reiniger).
Kosmetische Hochfrequenzstäbe erzeugen geringe Mengen an Ozon und Stickoxiden, die bei der Ausreinigung von Akne-Komedonen oder der Behandlung entzündeter Hautareale desinfizierend wirken. In kosmetischen Bedampfungsgeräten (Vapozon) entsteht Ozon an einer UV-Licht abstrahlenden Quarzlampe.


Dr. Hans Lautenschläger

 


Nutzen Sie zum Lesen unserer Seiten auch die Reader-Ansicht für mobile Endgeräte.
Für Fragen stehen wir über koko@dermaviduals.de gern zur Verfügung.
Dies gilt auch für Druck- und sachliche Fehler.
© Copyright Kosmetik Konzept KOKO GmbH & Co. KG, Leichlingen, www.dermaviduals.de
Revision: 26.05.2021
 
  pdf
Download
 

veröffentlicht in
Beauty Forum medical
2021 (1), 18-19

 
Inhaltsstoffe - weitere Literatur
Nüsse und nussähnliche Früchte
Natrium und Kalium
Ist Titandioxid alternativlos?
Gold und Silber
Titandioxid – der Weißmacher
Regional und nachhaltig – Hanf, Nachtkerze, Ringelblume & Co.
Calcium und Magnesium – die steinigen Elemente
Phosphor – geballte Energie
Silicium – in Ketten gelegt
Schwefel für die schöne Haut
Wasser ist nicht nur nass
Stickstoff – eine treibende Kraft
Portrait Sauerstoff – ein Element der Sonderklasse
Sauerstoff – viel mehr als heiße Luft
Warmes Wässerchen – Überblick Thermalwasser
Klein aber gemein – Kunststoffe und Mikroplastik in der Kosmetik
Sauer macht lustig – pH-Wert von Haut und Kosmetika
CO2 – Nicht nur ein Treibhausgas
Komplexbildner & Co - ambivalente Ingredienzien in der Kosmetik
Aluminium-Update
Ressourcen der Natur - Pflanzliche Öle im Rahmen der Hautpflege
Versteckte Schadstoffe in Kosmetika
Endokrine Disruptoren - Schaden fürs Hormonsystem
Glykole in Hautpflegemitteln und Dermatika
Keimfrei verpackt - Produkte & Methoden
Triclosan - teils verboten, weit verbreitet
Aluminium - ein viel diskutiertes Element1
Wachse - eine unverzichtbare Stoffklasse
Übersicht: Freisetzung und Bioverfügbarkeit
Huckepack - Übersicht Trägersysteme
Ohne Träger wenig Wirkung - was können Trägerkörper in Kosmetikprodukten?
Silizium - Global Player der Kosmetik
Emotionsauslöser - Streifzug durch die Welt der Duftstoffe
Mini-Kuppler - Von der Seife zum Hightech-Emulgator
Säuren und Basen von A bis Z
Wie Sand am Meer - Silizium und seine Verbindungen
Riechprobe? Aldehyde und Ketone
Vielfältig im Einsatz - Alkohole in Hautpflegemitteln
Echt gallig! - Reinen Alkohol einschenken
Vergällungsmittel in Kosmetika - Gesundheit ist zweitrangig
(Poly)Saccharide in Kosmetika - Von A wie Alginat bis Z wie Zuckertensid
Polyethylenglykole & Co - Von Wirkungen und Nebenwirkungen
Pflanzenöle
Fette und Öle - Kohlenwasserstoffe in Kosmetika
Haltbarkeit von Kosmetika - Was macht Kosmetika empfindlich?
Pflanzliche Öle und Extrakte - Essentielle Komponenten
Vielseitig - Neue Öle und Extrakte
Naturwirkstoffe unter der Lupe: Quo vadis?
Wasser ist nicht gleich Wasser - Wasserqualitäten
Konservierungsstoffe
Lipophil - Öle und Fette in der Kosmetik
Mindesthaltbarkeit und Konservierung
Emulgatoren - "Wir machen Mischen möglich!"
Inhaltsstoffe - objektive Infos erwünscht
Konservierungsstoffe - Keime & Co fest im Griff
Hilfsstoffe in Kosmetika
Fettstoffe - Die Basis der Hautpflege
Pflegende Wirkstoffe - Vitamine, Öle & Co
Pflegende Wirkstoffe - Die Haut glätten und rundum schützen
INCI - Die Deklaration gibt Auskunft
Frei von Konservierungsmitteln 
Emulsionen - Mikroemulsionen - Nanoemulsionen
Emulgatoren - Alternativen gesucht 
Ceramide - Lipide mit vielfältigen Aufgaben